1 The repeat unit for poly(propenamide) is

(Total for Question = 1 mark)

2 The structures of three amino acids are shown in the table.

Amino acid	Structure
cysteine	HSCH ₂ CH(NH ₂)COOH
glycine	H ₂ NCH ₂ COOH
threonine	CH ₃ CH(OH)CH(NH ₂)COOH

The tripeptide glycine-cysteine-threonine is

- $\blacksquare \ \textbf{A} \ H_2 NCH_2 CONHCH(CH(OH)CH_3)CONHCH(CH_2 SH)COOH$
- **B** H₂NCH₂CONHCH(CH₂SH)CONHCH(CH(OH)CH₃)COOH
- $\blacksquare \ \textbf{C} \quad H_2 NCH(CH(OH)CH_3)CONHCH(CH_3SH)CONHCH_2COOH$
- $\blacksquare \ \textbf{D} \quad H_2 NCH(CH_2SH)CONHCH_2 \ CONHCH(CH(OH)CH_3)COOH$

(Total for Question = 1 mark)

3 The amino acid alanine, $H_2NCH(CH_3)COOH$, exists as a solid at room temperature.

The most important reason for this is that it

- A exists as a zwitterion.
- **B** forms hydrogen bonds.
- **C** is amphoteric.
- **D** has strong London forces.

4 The skeletal formula of an organic compound is shown below.

This compound is

- **B** an amide.
- **C** a primary amine.
- **D** a secondary amine.

5 In an aqueous solution with a pH of 7, the amino acid alanine exists mainly as

6 Excess dilute sulfuric acid is added to phenylamine. What is the product of the reaction?

- 7 Butylamine ($T_b = 77.8$ °C) has a higher boiling temperature than propylamine ($T_b = 47.7$ °C). This is because the
 - A hydrogen bonds of butylamine are stronger than the hydrogen bonds of propylamine.
 - **B** London forces of butylamine are stronger than the hydrogen bonds of propylamine.
 - **C** London forces of butylamine are stronger than the London forces of propylamine.
 - **D** C—H bonds of butylamine are stronger than the C—H bonds of propylamine.

8 The monomer of the addition polymer poly(propenamide) is $CH_2 = CHCONH_2$. The repeat unit of the polymer is

(Total for Question = 1 mark)

9 In an aqueous solution with a pH of 12, the amino acid alanine exists mainly as

10 A section of the polypeptide made from a single amino acid is shown below.

The polypeptide was heated with excess dilute sodium hydroxide solution until no further change took place.

Which of the following products is formed?

11 Which of the following pairs of compounds could form a polyamide?

(Total for Question = 1 mark)

12 Methylamine, CH₃NH₂, is very soluble in water. This is because it

- A forms hydrogen bonds with water.
- **B** forms London forces with water.
- **C** exists mainly as ions in aqueous solution.
- **D** exists as a zwitterion.

13 The structure below shows the repeating pattern of a polymer.

Which of the following pairs of compounds could react **rapidly** to form this polymer?

(Total for Question = 1 mark)

14 Which of the following structures best represents the amino acid, alanine, in an aqueous solution with a pH of 12?

15 Which of the following is true for **all** amino acids?

All amino acids

- A exist as optical isomers.
- **B** are neutral in solution.
- C are essential to life.
- **D** are crystalline solids at room temperature.

```
(Total for Question = 1 mark)
```

16 In order to make CH₃CH₂CONHCH₃, you could use

- \square A CH₃CH₂COOCH₃ + NH₃
- \blacksquare **B** CH₃CH₂COCl + CH₃NH₂
- $\label{eq:constraint} \blacksquare \ C \quad CH_3CH_2COO^-Na^+ + CH_3NH_2$
- $\square D CH_3CH_2CONH_2 + CH_3NH_2$

(Total for Question 1 mark)

17 Benzocaine is used as a local anaesthetic.

Separate samples of a solution of benzocaine are added to 2,4-dinitrophenylhydrazine, hot aqueous sodium hydroxide, and dilute hydrochloric acid.

Which chemicals react with benzocaine?

- \blacksquare **A** All three
- **B** Only sodium hydroxide and hydrochloric acid
- C Only hydrochloric acid
- **D** Only sodium hydroxide

PhysicsAndMathsTutor.com

18 Four polymers labelled A to D have the following formulae:

$$\mathbf{A} \quad \begin{pmatrix} \mathbf{O} & \mathbf{O} & \mathbf{H} \\ \mathbb{C} & (\mathbf{CH}_{2})_{4} & \mathbf{C} & \mathbf{N} & (\mathbf{CH}_{2})_{6} & \mathbf{N} \\ \mathbb{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \end{pmatrix}_{n}$$
$$\mathbf{B} \quad \begin{pmatrix} \mathbf{H} & \mathbf{OH} & \mathbf{H} & \mathbf{OH} \\ \mathbb{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} \\ \mathbb{H} & \mathbb{H} & \mathbb{H} & \mathbb{H} \end{pmatrix}_{n}$$
$$\mathbf{C} \quad \begin{pmatrix} \mathbf{H} & \mathbf{OOCCH}_{3} & \mathbf{H} & \mathbf{OOCCH}_{3} \\ \mathbb{H} & \mathbb{H} & \mathbb{H} & \mathbb{H} \end{pmatrix}_{n}$$
$$\mathbf{D} \quad \begin{pmatrix} \mathbf{H} & \mathbf{CH}_{3} & \mathbb{H} & \mathbf{CH}_{3} \\ \mathbb{L} & \mathbb{L} & \mathbb{L} & \mathbb{L} \\ \mathbb{H} & \mathbb{H} & \mathbb{H} & \mathbb{H} \end{pmatrix}_{n}$$

- (a) Which polymer is most soluble in hot water?
- A
- **B**
- **C**
- **D**

(1)

(b) Which polymer is formed from the monomer shown below?

(Total for Question 3 marks)

(1)

- **19** Ammonia (NH₃), butylamine (CH₃CH₂CH₂CH₂NH₂) and phenylamine (C₆H₅NH₂) all form alkaline solutions in water. The order of **increasing** pH of equimolar solutions is
 - \square A $C_6H_5NH_2$ < $CH_3CH_2CH_2CH_2NH_2$ < NH_3
 - \square **B** NH₃ < CH₃CH₂CH₂CH₂NH₂ < C₆H₅NH₂
 - \square C $C_6H_5NH_2$ < NH_3 < $CH_3CH_2CH_2CH_2NH_2$
 - \square **D** CH₃CH₂CH₂CH₂NH₂ < NH₃ < C₆H₅NH₂

(Total for Question 1 mark)

20 Amino acids are crystalline solids with a high melting temperature because

- A each molecule has a large number of electrons.
- **B** each molecule forms hydrogen bonds at both ends.
- \square C a proton is transferred from one end of the molecule to the other.
- **D** their shape allows the molecules to pack close together.

(Total for Question 1 mark)

21 An organic compound X is much more soluble in dilute hydrochloric acid than in water. Compound X forms a coloured complex with aqueous copper(II) ions.

Compound **X** could be

- \square A C₆H₅COOH
- \square **B** C₆H₅NO₂
- \square C C₆H₅NH₂
- \square **D** C₆H₅OH

- 22 1-butylamine, CH₃CH₂CH₂CH₂NH₂, reacts with ethanoyl chloride to form
 - \square A CH₃CH₂CH₂CH₂NH₃⁺Cl⁻
 - **B** CH₃CH₂CH₂CH₂NHCOCH₃
 - \Box C CH₃CH₂CH₂CH₂NHCH₂CH₃
 - \square **D** CH₃CH₂CH₂CH(COCH₃)NH₂

(Total for Question = 1 mark)

- **23** Glycine, H_2NCH_2COOH , is a solid that has a melting temperature of about 250 °C, and it is very soluble in water. This is because of the
 - A formation of intermolecular hydrogen bonds in the solid and hydrogen bonds with water.
 - \blacksquare B formation of H₃N⁺CH₂COO⁻ ions which interact strongly with each other in the solid and with water.
 - \square C dissociation of the molecule to form $H_2NCH_2COO^-$ and H^+ ions in the solid and the solution.
 - \square **D** protonation of the molecule to form $H_3N^+CH_2COOH$ ions in both the solid and the solution.

24 Which of the following products is formed when phenylamine (aniline) is reacted with **dilute** sulfuric acid?

25 An organic compound, X, shows the following properties:

- Oxidation of compound **X** produces a substance that reacts with 2,4-dinitrophenylhydrazine to give a yellow precipitate but does **not** react with Fehling's or Benedict's solution.
- Compound **X** reacts with ice-cold nitrous acid to form a compound that gives a yellow precipitate with an alkaline solution of phenol.

What is the formula of compound **X**?

26 The organic product of the reaction between ethanoyl chloride and methylamine has the formula

(Total for Question 1 mark)

- 27 In the solid state, the amino acid serine exists in the form
 - \square A H₃N⁺CH(CH₂OH)COOH
 - \square **B** H₃N⁺CH(CH₂OH)CO₂⁻
 - \square C H₂NCH(CH₂OH)COOH
 - \square **D** H₂NCH(CH₂OH)CO₂⁻

28 The best method for separating a mixture of amino acids in solution is

- \blacksquare A distillation.
- **B** solvent extraction.
- \square C chromatography.
- **D** recrystallization.

(Total for Question 1 mark)

- 29 Which of these compounds will not form an amide in a reaction with ethanoyl chloride?
 - \square A NH₃
 - \square **B** CH₃CH₂NH₂
 - \square C CH₃CH₂NH(CH₃)
 - \square **D** CH₃CH₂N(CH₃)₂

(Total for Question 1 mark)

- **30** Which of the following reagents could be used to produce propanamide, CH₃CH₂CONH₂?
 - A Ammonia and 1-chloropropane
 - **B** Ammonia and propanoyl chloride
 - C Methylamine and 1-chloropropane
 - **D** Methylamine and propanoyl chloride